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Heat Transfer Enhancement of Spray Cooling with Nanofluids 

 
Christian David Martinez 

 

ABSTRACT 

 
Spray cooling is a technique for achieving large heat fluxes at low surface 

temperatures by impinging a liquid in droplet form on a heated surface.  Heat is removed 

by droplets spreading across the surface, thus removing heat by evaporation and by an 

increase in the convective heat transfer coefficient.  The addition of nano-sized particles, 

like aluminum or copper, to water to create a nanofluid could further enhance the spray 

cooling process.  Nanofluids have been shown to have better thermophysical properties 

when compared to water, like enhanced thermal conductivity. Although droplet size, 

velocity, impact angle and the roughness of the heated surface are all factors that 

determine the amount of heat that can be removed, the dominant driving mechanism for 

heat dissipation by spray cooling is difficult to determine. 

In the current study, experiments were conducted to compare the enhancement to 

heat transfer caused by using alumina nanofluids during spray cooling instead of de-

ionized water for the same nozzle pressure and distance from the heated surface.  The 

fluids were sprayed on a heated copper surface at a constant distance of 21 mm.  Three 

mass concentrations, 0.1%, 0.5%, and 1.0%, of alumina nanofluids were compared 

against water at three pressures, 40psi, 45psi, and 50psi.  To ensure the suspension of the 
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aluminum oxide nanoparticles during the experiment, the pH level of the nanofluid was 

altered.  The nanofluids showed an enhancement during the single-phase heat transfer 

and an increase in the critical heat flux (CHF).  The spray cooling heat transfer curve 

shifted to the right for all concentrations investigated, indicating a delay in two-phase 

heat transfer.  The surface roughness of the copper surface was measured before and after 

spray cooling as a possible cause for the delay. 
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Chapter 1 – Introduction 
 
 
  Gases or liquids impinging on a flat surface have been used to enhance the 

heating, cooling, or drying of a surface due in part to the increase in convection heat 

transfer coefficient.  The delivery of the gas or liquid to the surface has been achieved by 

the use of a single nozzle or an array of nozzles usually oriented normal to the target 

surface.  Impinging jets have been used in many applications including the annealing of 

metals and the cooling of gas turbine blades.  One particularly important application of 

impinging jets is the spray cooling of high performance electronic devices  (Incropera, 

DeWitt, Bergman, and Lavine 402).  The need for these electronic devices to be smaller 

and faster requires the removal of large heat fluxes to keep the product working and 

extend its life cycle.  Currently, many electronic devices use a heat sink and fan 

combination to remove heat because of their simplicity and low cost.  The heat sink 

conducts heat from the heated surface efficiently because of its high thermal conductivity 

and dissipates the heat through its fins to the surroundings via forced convection using a 

fan when is usually mounted on top of the heat sink.  Another popular way to remove 

heat is by the use of heat pipes.  Heat pipes most commonly use the evaporation of water 

or some kind of coolant to remove heat from a heated surface.  The hot end of the heat 

pipe vaporizes the working fluid increasing the vapor pressure at that end providing the 

driving force needed to move the vapor to the cooler condensing end and providing the 

hot end with the lower temperature working fluid once again.     
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Both the heat sink and the heat pipe, though they are widely used, have their limitations.  

To be effective at removing and the spreading the heat, the heat sink needs to be a 

number of times larger than the heated surface, usually a computer processing unit or 

CPU, leading to a size constraint of the electronic device.  Also, parts of the heat sink, 

like the pins, that are father away from the heat source are, by nature, cooler which 

reduces the rate of heat transfer.  Heat pipes suffer from different limitations.  Since most 

heat pipes depend on pressure differences to remove heat, the interaction between the 

liquid and vapor phases can cause the heat transfer rate to deteriorate because of pressure 

losses caused by entrainment.  To remove large amounts of heat with heat pipes requires 

longer distances to avoid vaporizing all the liquid in the heat pipe rendering it useless.  

One way to remove large amounts of heat from CPU’s and other similarly heated 

surfaces without the need for long distances or large pieces of metals and fans is with 

spray cooling.    

Spray cooling typically involves the phase change heat transfer of a liquid to a 

vapor by impingement on a flat heated surface.  The most common fluid used is water 

because of its well known thermal properties, abundance, cost effectiveness, easiness to 

store and it’s harmlessness to the environment.  Typically, the water is delivered to the 

surface in a mist through the use of a round or rectangular nozzle.  The enhancement for 

removing large quantities of heat comes from the increased value of the convection heat 

transfer coefficient.  The convection heat-transfer coefficient during spray cooling varies 

not only with the temperature between the surface and the fluid but also with the spray’s 

characteristics.  The spray’s characteristics include but are not limited to: temperature and 

thermal conductivity of the water, droplet size, velocity and angle.  If the thermal 
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properties of the water were to be enhanced then, theoretically, that should lead to an 

enhancement of convection heat transfer coefficient and increase the heat that can be 

removed from the surface. 

 One way to change the thermal physical properties of water is by the addition of 

nano-size particles to create a nanofluid [Choi].  Research on nanofluids has shown an 

increase in the thermal conductivity over the base fluid alone [Choi].  The increase in the 

thermal conductivity of water has the potential to enhance the heat flux removed from a 

heated surface during spray cooling by increasing the convective heat transfer coefficient.  

There are other properties that can affect the effectiveness of spray cooling using 

nanofluids, like the surface roughness of the heated surface, that also need to be 

investigated. 
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Chapter 2 – Objectives of Current Study 

 

 The objective of the current study is to determine the effectiveness of alumina 

nanofluids for dissipating heat from a heated copper surface using a lateral spray cooling 

experiment.  The data collected is compared to de-ionized water at the same nozzle 

pressure and distance from the surface.  Different mass concentrations of alumina 

nanofluids at different pressures will be compared to attempt to establish an optimum 

combination of concentration and pressure.  Other parameters can have an effect on the 

effectiveness of spray cooling, such as the surface roughness of the impinged surface.  

Therefore, the surface roughness of the copper surface is recorded before and after spray 

cooling with the alumina nanofluid to investigate the effects of the nanoparticles on the 

copper surface.   
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Chapter 3 - Literature Review 
 
 
 

3.1 Nanofluids 

 There are many different types of nanofluids that can be made by using different 

nanoparticles and base fluid combinations.  Some of the most common nanoparticles 

used are Alumina Oxide (Al2O3), Copper II Oxide (CuO), Zinc Oxide (ZrO2), and Silica 

Oxide (SiO2).  The most common base fluids used for nanofluids are de-ionized water 

and ethanol.   

All nanofluids follow a basic preparation technique.  Once the desired weight or 

volume fraction has been determined, the nanoparticles are added into the base fluid and 

mixed.  Mixing is usually done by ultrasonication to avoid settling of the particles.  The 

amount of time spent mixing the nanofluids depends on the many factors such as the ratio 

of base to nanoparticles, how long the experiment will last, and the weight or volume 

fraction used.   

The results of the first research into nanofluids conducted by Choi et al. (1995) 

showed that these new nanofluids had tremendous heat transfer applications because of 

their improved heat transfer properties.  A lot of research has gone into finding exactly 

why nanoparticles have such enhancement to heat transfer properties of the fluid but no 

definitive answers have been found.  Jang et al. (2004) and Chon et al. (2005) have 

theorized that microconvection induced by Brownian motion of the nanoparticles is one 
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of the driving mechanisms behind the thermal enhancements of nanofluids.  The 

random motion of the nanoparticles would create a source of fluid convection that would 

increase the thermal properties of the base fluid.  Most researchers agree that nanofluids 

have been shown experimentally to have better heat transfer properties than the base fluid 

alone.  Another advantage of utilizing nanofluids is that at the nano-scale the particles are 

small enough to stay in suspension, under the right conditions they can stay in suspension 

indefinitely, effectively eliminating sedimentation, clumping, and clogging. 

   

3.1.1 Effects of pH on Nanofluids 

 One of the most common challenges in using nanofluids is maintaining the 

suspension of the nanoparticles within the fluid.  Anoop et al. (2009) was able to 

accomplish suspension of aluminum oxide particles for several weeks by altering the pH 

value of the nanofluid.  By keeping the nanofluid away from the iso-electric point (IEP), 

the point where there is zero net charge between the particles and the bulk fluid, the 

particles were kept in suspension by the electrostatic repulsive forces between them.  The 

pH values of 1 wt%, 2 wt%, 4 wt% and 6 wt% were found to be 6.5, 6, 5.5, and 5 

respectively.   

 The dispersion behavior and thermal conductivity of Al2O3 – water nanofluids 

under different pH levels were investigated by Zhu et al. (2009).  For all the experiments 

a 0.1 wt% alumina nanofluid concentration was used.  To control the pH level of the 

nanofluid Zhu et al. used analytical grade hydrochloric acid (HCl) and sodium hydroxide 

(NaOH).  To aid in the initial dispersion of the nanoparticles an ionic surfactant, sodium 

dodecylbenzenesulfonate (SDBS), was added to the mixture and then mixed in an 
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ultrasonicator.  Zhu et al. found that for an alumina nanofluid containing SDBS as a 

surfactant, the optimum pH value is 8.0.  This is the point with the greatest value of zeta 

potential and therefore the particles have the highest electrostatic repulsive forces, which 

keep the particles in suspension.  The thermal conductivity of the alumina nanofluid was 

measured by the transient plane source (TPS) method.  Through the investigation it was 

found that there is an increase in thermal conductivity for pH values from 3.0 to 8.0-9.0.  

Zhu et al. suggest that as the pH level of the nanofluid increases farther away from the 

point of zero change (PZC), the point where there are no repulsive forces between the 

Al2O3 nanoparticles, therefore they coagulate.  As a result, the hydration forces are 

greater between the particles.  The increase in hydration forces causes an enhancement in 

the mobility of the nanoparticles.  The mobility of the nanoparticles creates microscopic 

motions that cause microconvection which enhances the heat transfer process. 

 

3.2 Heat Transfer Research with Nanofluids  

 It’s been shown that nanofluids in general have better heat transfer properties than 

the base fluid alone, specifically better thermal conductivity and heat transfer coefficient.  

These heat transfer properties theoretically should make nanofluids ideal for phase 

change heat transfer processes.  These enhancements have been researched using 

experiments such as the transient hot wire method, pool boiling, impinging jet and 

nanofluid tube flow. 
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3.2.1 Transient Hot Wire Method Research 

 The transient hot wire method (THW) is a transient dynamic technique where the 

temperature rise of a sample is measured at a defined distance from a heat source.  The 

hot wire is assumed to have a uniform heat output along its length and the thermal 

conductivity of the sample can be calculated from the temperature change of the sample 

over a known time interval. 

The thermal conductivity of different concentrations of water-copper and 

transport oil-copper nanofluids were investigated by Xuan et al. (2000) by the use of the 

transient hot wire method.  To calculate the thermal conductivity of the nanofluids, Xuan 

et al. used the fundamental equation of the transient hot wire method, give by: 

 
Cr

at

k

q
trT

2

4
ln

4
,


 , 

where k is the thermal conductivity of the sample, a is the thermal diffusivity, and C is 

given by: 

geC  , 

where g (g = 0.5772157) is Euler’s constant.  The results show that one of the factors 

affecting the thermal conductivity of nanofluids is the nanoparticle volume fraction.  An 

increase in volume fraction results in an increase in the thermal conductivity of both the 

water-copper and the transformer oil-copper nanofluids.  For example, the water-copper 

nanofluid saw an improvement in the thermal conductivity ratio of nanofluid to water 

from 1.24 to 1.78 with an increase of volume fraction of 2.5% to 7.5%.  Hwang et al. 

(2006) also investigated the effects of nanoparticle concentration on the thermal 

conductivity of nanofluids using the THW method.  The investigation was conducted 

 8
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with multiwalled carbon nanotubes (MWCNT) in water, copper monoxide (CuO) in 

water, silicon dioxide (SiO2) in water, and CuO in ethynele glycol.  The results of the 

investigation were similar to Xuan et al., where an increase in the thermal conductivity of 

the nanofluids was obtained with an increase in the volume fraction concentration of the 

nanoparticles.  Hwang et al. also reported that the thermal conductivity of nanofluids 

were also dependent on the thermal conductivity of the nanoparticles and the base fluid.  

For instance, for the same volume fraction concentration of 1% the CuO-water nanofluid 

saw an increase in the thermal conductivity of approximately 5% when compared to an 

improvement of approximately only 3% for SiO2-water nanofluids.  One possible factor 

for the difference in improvement is the thermal conductivity of the nanoparticles, 76.5 

W/mK for CuO compared to only 1.38 W/mK for SiO2.  Different enhancements in 

thermal conductivity where also acquired for nanofluids with the same nanoparticles but 

different base fluids.  The enhancement to thermal conductivity for CuO-ethynele glycol 

nanofluids was higher than that for CuO-water nanofluids for the same volume fraction 

concentration.  The results show that the base fluid with the lowest thermal conductivity 

will benefit more from the addition of nanoparticles, in this case the ethynele glycol with 

a thermal conductivity of 0.252 W/mK compared to that of water with 0.613 W/mK.  

Zhang et al. (2006) used a method based on the THW method called the short hot wire 

(SHW) method to conduct experiments with different nanoparticle and base fluid 

combinations.  Different concentrations of nanoparticles and the temperature of the 

nanofluid are investigated for their effects on the thermal conductivity of the nanofluid.  

In the study gold (Au)-toluene nanofluid at a volume fraction of 0.003%, Al2O3-water 

nanofluids with mass concentrations of 0%, 10%, 20% and 40%, and carbon nanofiber 
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(CNF)-water nanofluids with a volume concentration range of 0 to 1% are investigated.  

Zhang et al. also recorded increases in thermal conductivity of all nanofluids investigated 

corresponding to increases in the concentration of the nanoparticles and the temperature 

of the nanofluid.  The slope of the dependence of the thermal conductivity on temperature 

for nanofluids was compared to pure water and it was found that the slopes were the 

same.  The results indicate that the temperature dependence on the thermal conductivity 

and thermal diffusivity of the nanoparticles do not have an affect on the thermal 

conductivity and thermal diffusivity of the nanofluid for the given concentrations.  Xie et 

al. (2002) also used the THW to study the thermal conductivity of nanofluids by looking 

at different volume fractions of Al2O3 particles suspended in de-ionized water, ethanol, 

and pump oil, different specific surface areas, and by looking at the different pH values 

of the nanofluid.  Xie et al. found that for all the base fluids the thermal conductivity 

increases with increasing volume fraction but with different slopes, corresponding to 

different pH values.  The results show that with an increase in pH level the enhanced 

thermal conductivity ratio decreases.  When the difference between the pH value of the 

suspension and the isoelectric point increases, the hydration forces among the particles 

start to increase which leads to an enhancement of the mobility of the nanoparticles in the 

fluid.  This enhancement in the mobility of nanoparticles causes microconvection that 

enhances the heat transfer process.  The results show that there is an optimum specific 

surface area of the nanoparticles that enhance thermal conductivity.  The thermal 

conductivity increases with increasing specific surface area at first but then begins to 

decrease.  The optimum specific surface area for this study is found to be 25 .  One 

of the factors for this change in thermal conductivity is that as the particle size of the 

12 gm

 10
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nanoparticle decreases, the specific surface area increases proportionally.  Since heat 

transfer in nanofluids occur at the particle-fluid interface, a reduction in particle size can 

result in a large interfacial area.  Murshed et al. (2005) prepared nanofluids by dispersing 

titanium oxide (TiO2) nanoparticles in rod and spherical shapes in de-ionized water to 

conduct THW experiments.  The results show that the thermal conductivity increases 

with increasing nanoparticle volume concentration.  The shape of the nanoparticles also 

affects the thermal conductivity of the nanofluid.  The rod shaped TiO2 nanoparticles 

showed an enhancement of 33% in thermal conductivity when compared to the base fluid 

alone at a volume concentration of 5%.  In comparison, the spherical shaped 

nanoparticles showed an enhancement of 30% at the same volume concentration.   

 

3.2.2 Pool Boiling Research 

 Pool boiling is the process in which vapor is created at the liquid-surface interface 

by a surface heated above the saturation temperature of the bulk fluid.  The motion of the 

vapor and the surrounding fluid near the heated surface is due to buoyancy forces.  As 

vapor escapes the surface, liquid comes in to fill the void and this process removes heat 

from the heated surface.   

 Bang et al. (2005) investigated the boiling heat transfer characteristics in different 

volume concentrations of alumina nanofluids and compared the results to pure water.  

Both vertical and horizontal heated surfaces were considered for the experiment.  The 

research shows that the addition of alumina nanoparticles causes the boiling curve to shift 

to the right, which means that there are decreases in the pool nucleate boiling heat 

transfer for all concentrations.  Also, it was observed that the nucleate boiling regime was 
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delayed due to an extended natural convection stage which is inconsistent with the 

increase in thermal conductivity of nanofluids.  On the other hand, the critical heat flux 

(CHF) was increased by 32% and 13% for horizontal and vertical heaters respectively.  

Bang et al. suggested that the fouling of the heated surface by the alumina nanoparticles 

caused a decrease in the nucleation site density.  Large vapor blankets close to the surface 

are generated with the decrease in nucleation sites which allows more water to be 

supplied to the heated surface.  You et al. (2003) conducted pool boiling experiments of 

Al2O3 water nanofluids at a pressure of 2.89 psia which gives a saturation temperature of 

60 ˚C using a 1 x 1 cm2 polished copper surface.  The nanoparticle mass concentrations 

ranged from 0 g/l to 0.05 g/l and their results were compared to de-ionized water.  The 

results show an increase in the CHF with an increase of mass concentration.  A 

remarkable increase of 200% enhancement was shown with a 0.05 g/l mass 

concentration.  Another result of the study shows that the average size of the bubbles 

increased and the frequency decreased with the use of nanofluids.  You et al. concludes 

that the increase in the CHF is not related to the increase in thermal conductivity by the 

addition of nanoparticles.  Das et al. (2003) also investigated the boiling heat transfer 

characteristics of 1%, 2%, and 4% concentration alumina nanofluids with similar results 

to those obtained by Bang et al.  The boiling curve again showed a shift to the right with 

increasing concentration of nanoparticles.  Das et al. considered the surface roughness of 

the heaters as one of the factors for the degrading of the heat transfer performance.  

Surface roughness measurements of the heated copper surface showed that after pool 

boiling experiments with nanofluids, the surface of the heater was smoother than before 

the experiment.  The results suggest that the alumina nanoparticles are being trapped on 
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the surface, since the size of the particles were one to two orders of magnitude smaller 

than the roughness.  The trapped particles form a layer on the heated surface hindering 

fluid flow and heat transfer, which may explain the degrading of boiling heat transfer 

performance when compared to water.  Das et al. again investigated 1%, 2%, and 4% 

concentration of alumina nanofluids on pool boiling but on narrow horizontal tubes.  The 

tubes were 4 and 6.5 mm in diameter.  Once again, a deterioration of the pool boiling heat 

transfer curve resulted with increasing nanoparticle concentration.  The deterioration was 

less significant for the narrow tubes than tubes of a larger diameter (20 mm). Less 

deterioration in the narrow tubes was believed to be due to the change in bubble diameter 

and sliding bubble mechanism when compared to the larger diameter tubes.  Das et al. 

concluded that there are two conflicting phenomena occurring with pool boiling heat 

transfer with nanofluids.  The addition of nanoparticles increases the viscosity of the base 

fluid which increases the heat transfer of the base fluid but it is overshadowed by the 

decrease in the nucleation site density due to nanoparticles impinging on the surface.  

Zhou et al. (2004) conducted pool boiling experiments with different concentrations of 

Cu-acetone nanofluids and with acoustic cavitations.  Cavitations are the sudden 

formation and collapse of low-pressure bubbles due to mechanical forces.  In this 

experiment ultrasound was created by an ultrasonic vibrator.  Acoustic cavitations 

enhance heat transfer by utilizing the energy released by the collapsing low-pressure 

bubbles.  An increase in single-phase heat transfer was found with increasing 

concentration.  Though a degrading of pool boiling heat transfer was found, Zhou et al. 

noted that when the concentration increased from 0.133 g/l to 0.267 g/l no further 

degrading was noticed.  This result is substantially different than the work done by Das et 
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al. who found that heat transfer reduced with increasing nanoparticle concentration.  The 

thermophysical properties of the nanoparticles are though to be a reason for this 

discrepancy.  At all the nanoparticle concentrations investigated the acoustic cavitations 

were shown to enhance heat transfer.  As the distance between the sound source and the 

heated copper surface increased from 20 mm to 40 mm, only a slight decrease in pool 

boiling heat transfer was noticed.  Different volume fractions of a different nanofluid, 

titanium dioxide and the refrigerant HCFC 141b, was investigated by pool boiling by 

Trisaksri et al. (2009).  The investigation used 0.01, 0.03, and 0.05 vol% of TiO2 and a 

cylindrical copper tube as the boiling surface.  The first results from the experiment 

reveal that for the 0.01 vol% concentration the boiling heat transfer is the same as the 

base fluid alone.  This shows that adding very small amounts of nanoparticles to the base 

fluid had no effect on boiling heat transfer.  At 0.03 and 0.05 vol% concentration the 

boiling curve is shifted to the right indicating a deterioration of boiling heat transfer, 

which supports the results by Bang et al.  One explanation for the shift of the boiling 

curve is the range of the excess temperature in the natural convection regime of the 

nanofluid is larger than that for the base fluid alone; this causes a delay of nucleate 

boiling and a rise in the surface temperature.  Trisaksri et al. also looked at the effects of 

pressure on the heat transfer coefficient.  At lower concentrations, 0.01 and 0.03 vol%, 

the effects of pressure on heat transfer coefficient are negligible.  However, at 0.05 vol% 

there is a rise in the heat transfer coefficient at high heat fluxes.  The rise in heat transfer 

coefficient is lower than the rise seen for the base fluid alone.  Wen et al. (2008) 

conducted a pool boiling experiment using different particle concentrations in alumina 

nanofluids with different results.  The results show that there is an enhancement of both 
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boiling heat transfer coefficient and thermal conductivity when compared to the base 

fluid.  The improvement increases with increasing nanoparticle concentration and is more 

significant at higher heat fluxes.  Enhancement of up to 40% in heat transfer coefficient 

was achieved with a concentration of 1.25 wt%.  With an increase of 10% with a 

concentration of 1.6%, the enhancement to the thermal conductivity was not as 

significant as for the heat transfer coefficient.  Wen et al. suggests nanoparticle migration 

as one of the reasons for the enhancement in heat transfer coefficient and thermal 

conductivity and the depositing of nanoparticles on the heated surface, which introduces 

a thermal resistance, as one of the reasons for the deterioration that has been seen in other 

studies.  Vassallo et al. (2004) pool boiling experiment was done using silica oxide 

nanofluids with different particle sizes.  In this experiment there was no decrease in the 

heat transfer coefficient, but no improvement was found either.  The boiling curve for 

both particle sizes, 15nm and 50nm, follow the pure water boiling curve through the 

nucleate boiling regime.  Again, an increase in the CHF was found.  Coursey et al. (2008) 

researched an improvement in surface wettability as the possible mechanism for the 

increase in CHF.  Wetting is the ability of a fluid to remain in contact with a solid 

surface.  It was found that nanoparticles had a positive effect when there was a large 

contact angle between the fluid and the solid surface, which means that the surface is 

difficult to wet or the base fluid is less wetting.  For fluids that are naturally more 

wettable, for example ethanol, the addition of nanoparticles had little to no effect on 

wetting.  Water had increase in wetting with the addition of nanoparticles because it is a 

naturally less wettable fluid.  The increase in wetting was found to be one of the driving 

mechanisms to improving the CHF.  The conflicting results in heat transfer and thermal 
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conductivity by the addition of nanoparticles to a base fluid shows that the further 

research is needed in this field. 

 

3.2.3 Impinging Jet Research 

 Impinging jet research is another way to study the effects that nanoparticles have 

on the heat transfer coefficients of the base fluids.  A nozzle is used to spray a jet of fluid 

onto a heated surface to enhance the heat transfer coefficients for convective heating, 

cooling, or drying. 

 Nguyen et al. (2009) used a nozzle with a diameter of 3mm to spray a 36nm 

alumina nanofluid onto a confined and submerged heated aluminum surface.  Nguyen et 

al. tested different concentrations of nanoparticles, 0%, 2.8%, and 6%, with different 

flow rates and nozzle-to-surface distances.  The research shows that in some cases the 

addition of nanoparticles increases the heat transfer coefficient of the base fluid.  With a 

mass flow rate of 0.15 kg/s and a nozzle-to-surface distance of 2mm, the pure water has 

the highest heat transfer coefficient followed by 2.8% concentration and finally 6% 

concentration.  With the same mass flow rate but with a distance of 5mm, the 2.8% 

concentration of nanoparticles was found to give the highest heat transfer coefficient 

followed by water then 6% concentration.  At 10mm nozzle-to-surface distance, water 

and 2.8% concentration have almost the same heat transfer coefficient, while the 6% 

concentration came in at third place.  The study shows that there is an optimum 

nanoparticle concentration, flow rate, and nozzle-to-surface distance that will give the 

best results.  Also, concentrations greater than 6% should be avoided for impinging jet 

cooling.  Liu et al. (2007) conducted impinging jet research using CuO nanoparticles 
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suspended in water.  The effects of nanoparticle concentration and the flow conditions 

were investigated and compared to the base fluid.  The impingement took place in a 

20mm diameter heated copper surface with a 4mm diameter nozzle and the mass 

concentrations of CuO nanoparticles changed from 0.1 to 2 wt%.  The results of the study 

show that the jet boiling curves for all nanoparticle concentrations are shifted to the right, 

indicating a deterioration of boiling heat transfer when compared to the base fluid.  For 

the range tested, the different nanoparticle concentrations had little effect on the boiling 

heat transfer.  At higher jet velocities, as expected, the boiling heat transfer increases.  

The critical heat flux (CHF) of the nanofluids increased, up to 25% compared to water, 

with increasing concentrations at a low range.  At 1 wt% no more increase in CHF was 

noticed.   Liu et al. conducted surface roughness measurements before and after 

impinging jet with the base fluid and the nanofluid.  After the water jet impingement 

experiments were conducted the surface had become slightly oxidized.  The existence of 

a thin sorption layer was present after the nanofluid impingement test.  The sorption layer 

made the copper heater surface smoother, thus decreasing the number of nucleation sites.  

The sorption layer could explain the decrease in boiling heat transfer and the increase in 

CHF.  The decrease in nucleation sites and the increase in thermal resistance caused by 

the sorption layer could be a reason for the decrease in boiling heat transfer.  The 

existence of the sorption layer also enhances the trapping of liquid in the porous layer and 

prevents vapor blankets from forming leading to an increase in CHF.   
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3.2.4 Spray Cooling Research 

 Another method that utilizes the impingement of a working fluid onto a heated 

surface is spray cooling.  During spray cooling the pressure difference between the nozzle 

and the environment is sufficient to create droplets of the working fluid and those 

droplets impinge the surface to remove heat.   

Shen (2009) investigated the hydrodynamic characteristics of droplets impinging 

on a polished and a nano-structured heated surface.  The results of a single-wall-carbon-

nanotube nanofluid were compared to water.  The addition of nanoparticles resulted in 

larger spreading velocities, larger spreading diameters, and an increase in early stage 

dynamic contact angle.  It was found that the evaporation time was reduced by 37% with 

the use of nanofluids on the polished surface.  The combination of the nanofluid and the 

nano-structured surface yielded reduced evaporation times of 20%.  The reduction of the 

evaporation time indicates an enhancement to heat transfer for evaporative cooling.  

Coursey (2007) has added high aspect ratio microchannels to the copper sprayed surface 

resulting in very high enhancements.  An enhancement of 200% was noticed in the 

single-phase regime and since the two-phase regime was delayed, a heat transfer 

enhancement of up to 181% was achieved.  Interestingly, the onset of the two-phase 

regime was found to occur at a temperature that was independent of the nozzle pressure 

and mass flow rate.  Duursma et al. (2009) conducted an investigation of the droplet 

impinging mechanics using dimethyl sulfoxide (DMSO) and ethanol nanofluids.  The 

nanoparticles used in the investigation where aluminum with mass concentrations of up 

to 0.1% for DMSO and 3.2% for ethanol.  Single droplets where impinged onto the 

surface where high-speed photographic images were taken to show the differences in 
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droplet behavior.  The results revealed that droplet mechanics are mostly a function of 

Weber number and excess temperature.  An increase in the nanoparticle concentration 

results in a decrease in the droplet breakup on rebound after impingement and reduces the 

spreading of the droplet as well.  The maximum recoil height in also reduced with 

increasing mass concentration.  The heat fluxes of the pure bulk fluids and the ethanol 

nanofluids did not show any significant enhancement.  The DMSO nanofluid did show 

significant enhancement in heat flux when compared to the bulk fluid.  Sefiane et al. 

(2009) researched the evaporation kinetics and wetting dynamics on rough heated 

surfaces of alumina oxide nanoparticles suspended in ethanol.  The experiment looked at 

the shape of the droplets by measuring the contact angle, base diameter, and volume as a 

function of time.  The pinning of the drops on the heated surface became very important 

factor.  The ethanol with nanoparticles took a longer period of time to pin itself to the 

solid surface and therefore lead to a decrease in evaporation rate when compared to the 

base fluid alone.  The contact angles for the nanofluid were found to be larger during the 

depinning process than for the base fluid.  The total evaporation time was found to be 

longer for the base fluid compared to the nanofluid.  Again, contrary to the increase in 

thermal conductivity and heat transfer coefficient, the addition of nanoparticles has had 

an adverse effect on phase change heat transfer.   

Table 1: Summary Table 
 Enhancing Effects Deteriorating 

Effects 
References 

pH Effects    
Keep pH level away 
from isoelectric 
point 

Increases the 
dispersion of 
nanoparticles, 
hydration forces and 
ability for heat 

 Anoop et al. (2009) 
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Table 1: Summary Table (Continued) 
Increase in pH level  Thermal 

conductivity ratio 
decreases 

Xie et al. (2002) 

Transient Hot Wire 
Method 

   

Nanoparticle 
volume fraction 

Higher volume 
fraction results in an 
increase in thermal 
conductivity 

 Xuan et al. (2000) 

Base fluid thermal 
conductivity 

Lower thermal 
conductivity fluids 
will benefit more 
from the addition of 
nanoparticles 

Fluids with high 
thermal 
conductivities will 
benefit little from 
the addition of 
nanoparticles 

Hwang et al. (2006) 

Nanoparticle 
thermal conductivity 
and thermal 
diffusivity 
dependence on 
temperature 

 Does not have an 
effect on the thermal 
conductivity of the 
nanofluid 

Zhang et al. (2006) 

Nanoparticle surface 
area 

An optimum 
specific surface area 
exist 

 Xie et al. (2002) 

Pool Boiling    
Delay of nucleate 
boiling regime 

 Inconsistent with 
the increase of 
thermal conductivity 
of nanofluids 

Bang et al. (2005) 

Fouling of the 
heated surface by 
nanoparticles 

 Decrease in 
nucleation site 
density 

Bang et al. (2005) 

CHF enhancement  Not related to the 
increase in thermal 
conductivity by the 
addition of 
nanoparticles 

You et al. (2003) 

Increase in viscosity 
of the base fluid by 
the addition of 
nanoparticles 

Increase in heat 
transfer of the base 
fluid 

 Das et al. (2003) 

Decrease in 
nucleation site 
density 

 Overshadows the 
increase in heat 
transfer 

Das et al. (2003) 
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Table 1: Summary Table (Continued) 
Very small addition 
of nanoparticles 

 No effect on boiling 
heat transfer 

Trisaksri et al. 
(2009) 

Deposition of 
nanoparticles on 
surface 

 Introduces a thermal 
resistance 

Wen et al. (2008) 

Increase in 
wettability 

Driving mechanism 
for increase in CHF 

 Coursey et al. 
(2008) 

Impinging Jet    
Nanoparticle 
concentration, flow 
rate, and nozzle-to-
surface distance 

There exist an 
optimum to give the 
best results 

 Nguyen et al. 
(2009) 

Jet boiling curves 
shifted to the right 
when using 
nanofluids 

 Indicates a 
deterioration of 
boiling heat transfer 

Liu et al. (2007) 

Surface became 
smoother after using 
nanofluids 

 Decrease in boiling 
heat transfer 

Liu et al. (2007) 

Prevention of vapor 
blanket formation 
by the trapping of 
liquid in the porous 
layer 

Increase in the CHF  Liu et al. (2007) 

Spray Cooling    
Nanoparticle 
addition reduces 
evaporation time 

Enhancement to 
heat transfer for 
evaporative cooling 

 Shen (2009) 

Addition of high 
aspect ratio 
microchannels to 
the copper surface 

200% enhancement 
to single-phase heat 
transfer and 181% 
enhancement to 
two-phase heat 
transfer 

 Coursey (2007) 

Longer evaporation 
time for the base 
fluid compared to 
the nanofluid 

Heat transfer 
enhancement 

 Sefiane et al. (2009) 
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Chapter 4 – Experimental Setup and Procedure 

 

4.1 Nanofluid Preparation 

 In the current study, Al2O3 nanoparticles were chosen because of their widely 

known thermal properties and ease of dispersion in de-ionized water.  Aluminum Oxide 

mass concentrations of 0.1%, 0.5% and 1% were used for the investigation.  The 

nanoparticles used were made by Nanophase Technologies Corporation.  The properties 

of the nanoparticles are: 

Table 2: Properties of Aluminum Oxide Nanoparticles 
Purity Avg. Particle 

Size 
Specific 

Surface Area 
True Density Morphology 

99.5+% 45 nm 45 m2/g 3.6 g/cc Spherical 

   

The mass of the de-ionized water was determined on a digital scale at which time the 

desired mass concentration of alumina nanoparticles was added.  Initial dispersion of the 

mixture was achieved by sonicating the mixture for a minimum of 12 hours by the use of 

an Ultrasonic Cleaner FS140 sonicator.  Some evaporation of the nanofluid occurred due 

to the temperature rise during sonication.  To prevent any significant loss of de-ionized 

water mass, a lid was placed on the container and any change to the nanofluid mass 

concentration was assumed to be insignificant.  To assure proper alumina nanoparticle 

dispersion during the experiment, the pH of the sonicated nanofluid was altered.  An 

Oakton pH 11 handheld pH meter was used to determine the pH level of the nanofluid.  
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Since pH levels are a function of temperature, the container of hot nanofluids was taken 

from the sonicator and placed in a pool of room temperature water.  Once equilibrium 

was achieved the pH level of the nanofluid was changed with the use of sodium 

hydroxide (NaOH) and hydrochloric acid (HCl).  The pH levels for the different mass 

concentrations of alumina nanofluids were determined from the work of Anoop et al.  

Though the investigation that was referenced only dealt with mass concentrations of 1%, 

2%, 4%, and 6%, the data was plotted and extrapolated to apply to the current 

investigation.  The result of the regression yielded: 

y = 0.0239x2 - 0.456x + 6.892

R2 = 0.992
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Figure 1: pH Level vs. Mass Concentration of Alumina Nanofluids 
 
The extrapolated data gave pH values of: 

Table 3: pH Level of Selected Mass Concentrations 
Mass Concentration pH Level 

0.1% 6.8 
0.5% 6.7 
1.0% 6.5 

                                     

 23
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Visual inspection of the nanofluid after pH alteration showed that after 5 days the 

alumina nanoparticles maintained good dispersion within the water.  This was noticed by 

the cloudiness of the nanofluid, especially noticeable near the surface of the container.  If 

the nanofluid was clearer near the top of the container it was assumed that the 

nanoparticles were not very well dispersed. 

4.2 Copper Block 

 The copper block was fabricated out of single piece of tellurium copper.  

Tellurium copper was chosen for this investigation because of its high thermal 

conductivity and machinability.  A 25.4 mm2 heated surface was fabricated for this 

investigation.  The copper block was designed to provide a 40.64 mm long extended 

surface where three K-type, 30 gage thermocouples were inserted 12.7 mm deep at 

distances of 1 mm, 11 mm, and 21 mm from the spray surface.  The base of the copper 

block was 76.2 x 76.2 x 50.8 mm and had five holes fabricated where cartridge heaters 

were inserted. 

 

 24
Figure 2: Copper Block Design 
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The OMEGALUX CIR-2013/120V cartridge heaters were 50.8 mm long with a 9.525 

mm diameter and had a rated wattage of 500 watts.  Through prior experimentation, it 

was found that only four cartridge heaters were needed to conduct the investigation.  The 

cartridge heaters where inserted at the ends leaving the center hole empty.  Due to the 

high temperatures produced in the copper block an insulation of concrete was molded and 

placed on the extended surface.  Concrete was chosen because of its minimum expansion 

with temperature rise, cost effectiveness, could be easily reproduced in the laboratory and 

it sufficiently insulated the extended surface for the current investigation.  An insulated 

surface was necessary to justify assumption of a linear temperature profile.  To validate 

the assumption of a linear temperature profile through the extended surface and a uniform 

heat flux at the spray surface a COMSOL model was developed.  The boundaries of the 

model experienced convective heat transfer at 293 K and a convective heat transfer 

coefficient of 40 W/m2K.  The material properties of the concrete insulation were given 

by COMSOL’s materials database.  The volumetric heat flux ( q  ), generated by the 

cartridge heaters, was found by the following equation: 

CR

A
R V

V
Pq


1

2

2









 , 

where PR is the rated wattage of the cartridge heaters, VA is the actual voltage, VR is the 

rated voltage and C is the circumferential volume of the cartridge heaters.  The 

following figure demonstrates the boundary temperature profile for the copper block with 

15 volts of actual voltage to the cartridge heaters: 
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Figure 3: Boundary Temperature Profile 
 
The heat flux path is shown to be linear through the extended surface of the copper block. 

 

Figure 4: Heat Flux Path through Block 
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A uniform heat flux normal to the spray surface is important for accurate calculations 

during the experiment.  The model shows that the insulation adequately provides this 

uniformity. 

 

Hole for 
thermocouple 

Figure 5: Heat Flux Normal to Spray Surface 
 
4.3 Spray System 

 The working fluid was poured into a pressure tank that was pressurized by a 

compressed nitrogen tank.  The flow of the working fluid was regulated by a flow meter 

connected to a Tefen standard conical spray nozzle.   

 27
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Figure 6: Schematic of Spray System 
 
The nozzle was designed to deliver a uniform size and distribution of the droplets.  The 

distance between the nozzle and the heated surface was maintained at 21 mm.  The mass 

flow rates used in this investigation were: 

                                     Table 4: Mass Flow Rates 
Pressure [psi] Mass flow rate [g/s] 

40 0.53 
45 0.58 
50 0.61 

 

 

4.4 Spray Surface Preparation 

 The heated copper surface was cleaned after every trial to ensure that the surface 

characteristics were maintained relatively unchanged from one trial to the next.  After 

spray cooling with both water and the nanofluids, thin films were observed on the heated 

surface.  A layer of oxidation was caused by the water and a thin film of alumina 

nanoparticles were deposited by the nanofluid.  After the copper block was allowed to 

 28
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reach room temperature a liberal amount of Vishay Measurements Group, Inc. M-PREP 

conditioner was placed on the spray surface and wet-lapped 20 times in the same 

direction with 320 grit sandpaper to ensure uniformity of the surface.  A clean gauze was 

used to dry the surface after wet-lapping.  Finally, M-PREP neutralizer was applied with 

clean cotton-tipped applicators and the surface was dried once again. 

 

4.5 Acquisition System 

 A computer with an acquisition system made by National Instruments was used to 

acquire data for this investigation.  The thermocouples were connected to a NI SCXI-

1303 terminal block.  This block is designed specifically for high-accuracy thermocouple 

measurements and minimizes errors by using an isothermal construction.  The data was 

displayed on the computer by the use of LabVIEW 7.1 software.  A program was written 

that would display the temperature of each thermocouple simultaneously as a function of 

time. 
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Figure 7: LabVIEW Front Panel 
 
The waveform chart was used to determine when a steady state condition had been 

reached.  The resolution of the program was 1 sample at a rate of 10 Hz, which gave a 

good description of the measured transient temperatures data. 

 

4.6 Surface Roughness Measurement 

 To study the effects on the surface by spray cooling with nanofluids, 

measurements of its surface roughness were made.  To measure the roughness profile a 

Surtronic 3P profilometer was used.  The profilometer used a diamond tip stylus with a 

diameter of 5 m. The profilometer was able to compute and display common surface 

roughness values.  The cutoff length of the profilometer was 0.8 mm.  That meant that the 

profilometer could not detect any deviation from the normalized data greater than 0.8mm. 
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  4.7 Experimental Procedure 

  The experimental setup consisted of an open spray system and the copper block 

was oriented horizontally on a metal stand.  The effectiveness of different mass 

concentrations of alumina nanofluids were compared to de-ionized water at the same 

nozzle pressure and distance from the heated surface. The experimental procedure was 

repeated three times at each concentration and pressure to arrive at an average.  The mass 

of the de-ionized water was measured and the required alumina nanoparticles were added 

to achieve the desired mass concentration.  The mixture was then sonicated for at least 12 

hours to disperse the nanoparticles.  After sonication, the mixture was allowed to reach a 

temperature of 25 ˚C in a cooling bath.  The pH of the nanofluid was altered to maintain 

the nanoparticles in dispersion for the duration of the experiment.  The nanofluid was 

poured into the pressure tank and the desired spray nozzle pressure was set by using the 

compressed nitrogen tank.  The thermocouples were inserted into the extended surface of 

the copper block and the insulation was placed.  The electrical cartridge heaters were 

inserted into the copper block base and energized.  The flow meter was fully opened and 

the spray cooling of the surface began.  Once steady state was achieved, the temperatures 

of the three thermocouples were recorded and the voltage to the cartridge heaters was 

increased gradually until critical heat flux (CHF) was reached.  After concluding the 

experiment, the thermocouples, insulation, and cartridge heaters were removed and the 

copper block was allowed to cool.  Once cooled, the spray surface was cleaned and 

prepared for the next experiment. 
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Chapter 5 – Results and Discussion 

 

5.1 Uncertainty Analysis 

 In the current investigation, the uncertainties of the heat-flux calculations were 

dependent on the uncertainty of the temperature readings and the distance between the 

thermocouples.  To measure the uncertainty of the temperature readings, the uncertainty 

of the thermocouples and the DAQ (Data Acquisition) board became important.  First, 

the uncertainty of the thermocouples had to be expressed in terms of a voltage.  The 

sensitivity (STC) of the thermocouple was found by dividing the thermoelectric voltage 

(VTE) of the thermocouple by the corresponding temperature (T). 

 
 CT

mVV
S TE

TC 
  

  To find the uncertainty of the thermocouple in terms of voltage (UTC,V), the sensitivity 

was then multiplied by the uncertainty of the thermocouple (UTC,T) in degrees Celsius, 

which was 2.2 ˚C.   

 CU
C

mV
SU TTCTCVTC



 ,, 



  

The uncertainty of the DAQ board (UDAQ) was found by dividing the voltage range (VR) 

by 2 raised to the resolution of the board, which was 16 bits. 

 
162

mVV
U R

DAQ   
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With the uncertainty of the thermocouple and the DAQ board both in terms of voltages, 

the voltage uncertainty of the readings (UV) could be found by: 

   22
, DAQVTCV UUU   

Finally, the uncertainties of the temperature readings (UT) were found by converting the 

voltage uncertainty (UV) using the scaling function in the LabVIEW software.  The 

scaling function is used by LabVIEW to convert a measured voltage to temperature. The 

conversion was given by: 

UT = UV * ((2.508355E-2) + UV * ((7.860106E-8) + 
 

        UV * ((-2.503131E-10) + UV * ((8.315270E-14) + 
 

        UV * ((-1.228034E-17) + UV * ((9.804036E-22) + 
 

        UV * ((-4.413030E-26) + UV * ((1.057734E-30) + 
 

                                     UV * (-1.052755E-35))))))))) 

The scaling function has a range of 0 ˚C to 500 ˚C.  The distance between the 

thermocouples was found by a caliper with a resolution of 0.001 meters.  Therefore, the 

uncertainty of the distance (UC) was found by taking half the resolution. 

m
m

U c 0005.0
2

001.0
  

The uncertainty of the heat flux (Uq”) was found by considering the uncertainties of the 

temperature readings (UT) and the distance between the thermocouples (UC). 

,
222

" 

















L

U

T

U
qU CT

q  

where q is the calculated heat flux between the thermocouples at 1 mm and 11 mm from 

the heated surface, ΔT is the temperature difference between the two thermocouples, L is 
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the distance between the thermocouples, UC is the uncertainty of the distance between the 

two thermocouples, and U2
T  is the temperature uncertainty of the temperature difference 

between the thermocouples and is given by: 

   211,
2

1,
2

TTT UUU  , 

where UT,1 and UT,11 are the temperature uncertainties at distances of 1 mm and 11 mm 

from the heated surface respectively.  The uncertainty analysis revealed that the 

uncertainty of the heat flux measurements were approximately  4.6%. 

 

5.2 Experimental Results 

 In this investigation the heat flux removed from the heated surface was calculated 

by using one-dimensional conduction through the extended surface:   








 


11..1

11..1"
L

T
kq  

where k is the thermal conductivity of the copper block, ΔT1..11 is the temperature 

difference between thermocouples at distances of 1 mm and 11 mm from the heated 

surface, and L1..11 is the distance between the thermocouples.  The heat flux was plotted 

against the temperature of the surface minus the temperature of the working fluid.  The 

temperature of the working fluid was approximately a constant 23.5 ˚C throughout the 

length of the experiment.  To find the temperature of the surface the heat flux calculated 

between the thermocouples at 1 mm and 11 mm from the surface was assumed to be 

equal to the heat flux between the surface and the first thermocouple.  Therefore, the 

surface temperature could be calculated by: 
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11.. TL
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



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
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  

where q” is the calculated heat flux, k  is the thermal conductivity of the copper, LS..1 is 

the distance between the surface and the first thermocouple and T1 is the temperature of 

the thermocouple at 1 mm from the surface.  De-ionized water was first investigated at 

the different operating pressures.  The results of the de-ionized water spray cooling heat 

transfer curves were compared to investigate the role of pressure on heat transfer. 
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Figure 8: Spray Cooling Curve for Water at 40 Psi 
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Figure 9: Spray Cooling Curve for Water at 45 Psi 
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Figure 10: Spray Cooling Curve for Water at 50 Psi 
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Figure 11: Spray Cooling Curve Comparison of Water at Different Pressures 
 
Comparing the spray cooling heat transfer curves of water at the three different pressures 

showed that with increasing pressure, the heat transfer at the surface also increased.  

These results were expected because when the pressure is increased it results in an 

increase in the mass flow rate of water droplets being delivered to the heated surface.  

The CHF values at the corresponding temperatures are given below:   

Table 5: Critical Heat Flux for Water 
Pressure [Psi] Critical Heat Flux [W/m^2] Temperature [Celsius] 

40 110,833 106 
45 119,000 104.8 
50 129,500 105.1 

 

The data shows that increasing the pressure results in an increase in the CHF by 7.4% and 

8.8% when going from 40 to 45 Psi and 45 to 50 Psi respectively.  After the completion 

of the water data, one of the four cartridge heaters malfunctioned.  The experiments for 

the nanofluid part of the investigation was done with only three cartridge heaters, one 

inserted in the center and one on either side.  As a result of using only three cartridge 
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heaters, more data points were collected during the spray cooling experiments with 

nanofluids.  With only three cartridge heaters the heat flux generated at the same variac 

voltage was insufficient to reach CHF.  Therefore, the number of times the variac was 

incrementally increased to reach CHF was higher with three cartridge heaters than with 

four. 

The investigation began by looking at 1.0% mass concentration of alumina nanofluid.  
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Figure 12: Spray Cooling Curve for 1.0% wt. Alumina Nanofluid at 40 Psi 
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Figure 13: Spray Cooling Curve for 1.0% wt. Alumina Nanofluid at 45 Psi 
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Figure 14: Spray Cooling Curve for 1.0% wt. Alumina Nanofluid at 50 Psi 
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Figure 15: Spray Cooling Curve Comparison of 1.0% wt. Alumina Nanofluid at Different Pressures 
 

Similar to the results obtained for water, the heat flux obtained by using alumina 

nanofluids increased with increasing pressure.  The CHF values at the corresponding 

temperature for each pressure are given below:  

Table 6: Critical Heat Flux for 1.0% wt. Alumina Nanofluids 
Pressure [Psi] Critical Heat Flux [W/m^2] Temperature [Celsius] 

40 133,000 144.7 
45 140,000 143.9 
50 154,000 143.8 

  

An increase in the CFH of 10% resulted from an increase in pressure from 45 to 50 Psi 

compared to only a 5.3% increase when increasing the pressure from 40 to 45 Psi.  The 

results for 0.5% wt. concentrations are shown below. 
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Figure 16: Spray Cooling Curve for 0.5% wt. Alumina Nanofluid at 40 Psi 
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Figure 17: Spray Cooling Curve for 0.5% wt. Alumina Nanofluid at 45 Psi 
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Figure 18: Spray Cooling Curve for 0.5% wt. Alumina Nanofluid at 50 Psi 
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Figure 19: Spray Cooling Curve Comparison for 0.5% wt. Alumina Nanofluids at Different 
Pressures 
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As expected, the increase in pressure causes an increase in the heat flux removed from 

the heated surface.  The CHF values at the corresponding temperatures for each pressure 

are given below: 

Table 7: Critical Heat Flux for 0.5% wt. Alumina Nanofluid 
Pressure [Psi] Critical Heat Flux [W/m^2] Temperature [Celsius] 

40 126,000 145.4 
45 129,500 144.7 
50 143,500 142.5 

 

Increasing the pressure from 40 to 45 Psi only yielded a 2.8% increase in the CHF for 

0.5% wt. alumina nanofluid.  A more significant increase of 10.8% was noticed in the 

CHF when the pressured was raised from 45 to 50 Psi.  Finally, the 0.1% wt. 

concentration results are given below. 
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Figure 20: Spray Cooling Curve for 0.1% wt. Alumina Nanofluid at 40 Psi 
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Figure 21: Spray Cooling Curve for 0.1% wt. Alumina Nanofluid at 45 Psi 
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Figure 22: Spray Cooling Curve for 0.1% wt. Alumina Nanofluid at 50 Psi 
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Figure 23: Spray Cooling Curve Comparison for 0.1% wt. Alumina Nanofluid at Different Pressures 
 

Once again, increasing the pressure resulted in an increase in the heat flux at the spray 

surface.  The CHF data collected and the corresponding temperature for each pressure is 

given below: 

Table 8: Critical Heat Flux for 0.1% wt. Alumina Nanofluid 
Pressure [Psi] Critical Heat Flux [W/m^2] Temperature [Celsius] 

40 115,500 145.2 
45 122,500 144.7 
50 133,000 142.3 

 

Increasing the pressure from 40 to 45 Psi results in an increase of 6.1% to the CHF and 

increasing the pressure from 45 to 50 Psi gives an 8.6% increase.  The spray cooling 

experiments show the same results for water and alumina nanofluids, increasing the mass 

flow rate of droplets enhances heat transfer at the surface.  The objective of the study was 

to investigate enhancements when compared to water at the same pressure. Therefore, the 

alumina nanofluid data was compared to water at the same pressure. 
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Figure 24: Spray Cooling Curve Comparison of Water vs. Nanofluids at 40 Psi 
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Figure 25: Spray Cooling Curve Comparison of Water vs. Nanofluids at 45 Psi 
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Figure 26: Spray Cooling Curve Comparison of Water vs. Nanofluids at 50 Psi 
 

The data shows that the addition of alumina nanoparticles to water had a positive effect 

on single-phase and part of two-phase heat transfer during spray cooling experiments.  

The data also shows a shift to the right of the spray cooling curve, indicating a delay in 

two-phase heat transfer for all three pressures investigated.  The heat transfer 

enhancement can be seen by an upward shift of the spray cooling curve when using 

alumina nanofluids.  For example, at a pressure of 50 Psi and a temperature difference of 

approximately 79 ˚C, the heat flux at the spray surface for 1.0% wt. alumina nanofluid is 

calculated as 63,000 W/m2 compared to only 44,333.3 W/m2 with water.  That result, 

shows a 42% increase in the heat flux removed from the heated surface.  One possible 

explanation for the enhancement in heat transfer at the surface is the increase in 

wettability of the water by the addition of nanoparticles.  Wetting is the ability of a liquid 

to remain in contact with a solid surface.  Coursy et al. (2007) cited the increase in 

wettability as a possible mechanism in his pool boiling experiments.  Since, the copper 
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spray surface was oriented horizontally the droplets traveled across the heated surface, by 

the force of gravity, removing heat.  If the water’s wettability increased with the addition 

of alumina nanoparticles, the droplets surface area in contact with the surface increased 

as they moved along the surface, therefore increasing heat transfer at the surface. Another 

mechanism for the increase in single-phase heat transfer is the time it takes for a droplet 

to travel the length of the heated surface.  The increase in wettability will make the 

droplets attach to the surface longer increasing the ability for the droplet to remove heat. 

The data also shows that the mass concentrations of nanoparticles have little effect on the 

heat transfer enhancement during spray cooling.  The nanofluids also showed 

enhancements to the CHF at all three pressures.  The CHF enhancement was noticed to 

be effected by the mass concentrations of the nanofluids.  At a mass concentration of 

1.0% wt. the CHF had an average increase of 18.8%.  An average increase of 11.1% and 

3.3% was achieved with 0.5% wt. and 0.1% wt. mass concentrations respectively.  The 

spray cooling experiments with nanofluids also showed a delay in two-phase heat 

transfer.  The delay is characterized by a shift to the right of the spray cooling curve. One 

possible mechanism investigated for the increase in CHF and the delay in two-phase heat 

transfer was the surface roughness of the spray surface.  The nanoparticles used in this 

investigation were a number of magnitudes smaller than the surface roughness of the 

spray surface.  The nanoparticles are deposited to the surface by the vaporized water 

droplets.  As a result, the nanoparticles become impinged in the surface crevices and 

change the characteristics of the surface.  Once a layer of nanoparticles is deposited onto 

the surface, a new thermal resistance is introduced and the number of nucleation sites is 

reduced.  The heat flux at the surface will have to be conducted through the deposited 
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alumina nanoparticles, which have a lower thermal conductivity than the copper surface, 

before being removed by the spray cooling process.  A profilometer was used to measure 

the surface roughness of the spray surface before and after spray cooling with nanofluids 

and after the cleaning procedure had been performed.    
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Figure 27: Surface Roughness before Spray Cooling 
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Figure 28: Surface Roughness after Spray Cooling with 0.5% wt. Alumina Nanofluid 
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Figure 29: Surface Roughness after Cleaning Procedure 
 

The results of the surface roughness measurements show the effects by the addition of 

alumina nanoparticles to water.  The average roughness (Ra) value before spray cooling 

is found to be 1.15 m.  After spray cooling with a mass concentration of 0.5% wt. the 

surface roughness is measured again and found to have decreased to 0.89 m.  The 
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results of the surface roughness measurements indicate that the impinged alumina 

nanoparticles have made the copper surface smoother.  To ensure the repeatability of the 

experiment, the surface roughness was measured after the cleaning procedure was 

performed.  The cleaning procedure returned most of the roughness back to the surface 

and was found to be 1.06 m.  The impinged alumina nanoparticles on the copper spray 

surface have decreased the nucleation site density of the surface where the droplets 

change phase into vapor form.  The reduction of vapor on the heated surface caused a 

delay in two-phase heat transfer.  Two-phase heat transfer is desirable because it is a 

more effective way to remove heat when compared to single-phase heat transfer.  Two-

phase heat transfer utilizes the latent heat of evaporation of the working fluid to cause a 

phase change from liquid to vapor.  This process is endothermic, which means that 

energy is absorbed by the droplets from the heated surface in going from liquid to vapor.  

Since a vapor blanket cannot form as easily once the surface has become fouled by the 

alumina nanoparticles, an increase in the CHF during spray cooling is found to occur.  

During pool boiling experiments CHF is characterized by a layer of vapor that forms at 

the heated surface preventing the working fluid from coming in contact with the surface, 

resulting in an increase in temperature.  Similarly, during the spray cooling experiments, 

a vapor blanket formed over the heated copper surface which prevented the droplets from 

impinging the surface.  The hot vapor blanket over the surface is not effective at 

conducting heat away from the surface, because of the low heat transfer coefficient of the 

vapor, which results in an increase in the temperature of the spray surface.  The delay in 

two-phase heat transfer caused by the impingement of alumina nanoparticles allows for 

heat transfer to continue past the CHF point of water.  The higher surface temperatures 
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experienced during the delay increased the heat flux at the surface and led to an increase 

of the CHF when alumina nanofluids where used as the working fluid.  Higher CHF 

values resulted when using higher mass concentrations of alumina nanoparticles, though 

a further delay in CHF was not a function of mass concentration.  Theoretically, the 

higher mass concentration alumina nanofluids deposit more nanoparticles onto the 

surface than the lower concentrations during the length of the experiment.  This could 

have lead to less vapor and higher temperatures with higher mass concentrations. 
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Chapter 6 – Conclusion and Recommendations 

 

6.1 Conclusion 

 The results of the investigation show that adding nanoparticles to the de-ionized 

water enhanced single-phase heat transfer as indicated by an increase in heat flux at the 

surface by as much as 42% when compared to water at the same temperature difference 

and pressure.  One reason for this enhancement could be the change of the hydrodynamic 

characteristics of water.  The addition of nanoparticles made the water more wettable and 

increased the wetting angle of the droplets.  The droplets were able to remain in contact 

with the heated copper surface longer, increasing their effectiveness to remove heat.  The 

horizontal position of the heated surface had an effect on the enhancement as well.  With 

the horizontal orientation the droplets that impinged the surface at the top of the heated 

surface dragged across the surface by the force of gravity and heat was removed more 

effectively.  The mass concentration of the nanoparticles seemed to have little to no effect 

on the single-phase heat transfer enhancement but did show effects with the increase in 

the CHF.  All concentrations of nanoparticles resulted in a delay of two-phase heat 

transfer during the spray cooling investigation.  The decrease in nucleation site density 

delayed the formation of vapor and increased the thermal resistance at the spray surface.  

The delay of two-phase heat transfer created higher surface temperatures which led to the 

increase in CHF.   The higher mass concentration of 1.0% wt. resulted in an average 
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increase of 18.8% when compared to 0.5% wt. and 0.1% wt. with increases in CHF of 

11.1% and 3.3% respectively  

 

6.2 Recommendations 

 For future studies it will be important to investigate the results of altering the pH 

level of the nanofluid, since it has effects on the thermophysical properties of the 

nanofluid.  The effects on the hydrodynamic properties of water by the addition of 

nanoparticles should also be considered.  These properties could explain the 

enhancements to single-phase heat transfer and CHF.  The orientation of the heated 

surface should be changed and its effects investigated.  The copper block design could be 

improved to provide better efficiency of delivering the heat flux to the heated surface and 

not loosing much of it to the environment through the insulation.  Much lower mass 

concentrations of nanoparticles, in the order of 0.001%, should be investigated to find an 

optimum concentration.  To decrease the amount of nanofluids used during the 

investigation, a closed-looped system should be used. 
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